Integrated children's doll and water bottle for ease of access and encouraged consumption of water

Technology #cu13218

While dehydration in children is pervasive in third world countries with limited access to clean drinking water, an estimated one out of every seven children in the US is inadequately hydrated. Even mild dehydration can result in decreased mental and physical performance, altering a child’s mood, mental state and learning capacity. In US schools, while water fountains are available their ease of use and efficacy in preventing dehydration is extremely limited. This technology attempts to mitigate this hydration problem by integrating a water bottle into a child’s toy doll. By making the doll an attractive children’s toy, the technology aims to promote regular water consumption and reduce dehydration.

The KidCup makes drinking fun and reduces the number of items children and parents need to carry.

The KidCup is a water bottle with the exterior design of an appealing children's toy such as a princess doll. The water reservoir fills the doll body, the neck of the doll is dually the neck of the water bottle, the doll arms are the bottle handles, the head is the screw top, and the hair is molded into a straw cover. This technology allows for multiple doll designs, and headpieces can be easily swapped between KidCups for versatility and to fulfill the child’s creativity. Parents and caregivers carry multiple toys, snacks, drinks, and other necessaries for children. This technology additionally reduces the number of separate items parents must carry by integrating a toy with a water bottle.

Lead Inventor:
Rachel Joy Collens

Applications:
- Children’s toy for amusement
- Water and beverage portable container for children
• Promotion of proper hydration

Advantages:

• Encourages use and consumption of water with a dual entertaining design.
• Integrates the molded doll hair as a straw cover.
• Incorporates the doll head into the reservoir design for more realistic and appealing appearance.

Licensing Status:

Available for licensing and sponsored research support

Tech Ventures Reference: IR CU13218

Further Information: Columbia | Technology Ventures Email: TechTransfer@columbia.edu

Inventors

Rachel Joy Collens