Diabetes model derived from embryonic and pluripotent stem cells

Diabetes is a serious condition affecting over 25 million people in the US alone. An additional 75 million are “pre-diabetic”. Recently, stem cells have been developed as a potential tool to combat diabetes by enabling sophisticated analysis of the molecular physiology of the insulin-producing beta cells, and, ultimately, as a means of cell-based therapy. However, despite the promising potential of stem cells in these regards, methods for generation of fully competent beta cells are lacking. This technology describes a method to generate induced pluripotent stem cells (iPSC) from human subjects with diabetes mutations as well as a protocol to generate insulin-producing cells from human embryonic stem cells (hESC) and iPSC. This model uses patient’s skin cells, allowing personalized and accurate screening of treatments while also providing a platform for studying cellular effects of specific genes on the physiology of insulin-producing cells.

Diabetes stem cell models for insulin producing beta cells enable accurate analysis of therapeutic treatments.

This technology enables generating insulin-producing cells directly from a patient. In addition, it provides a more relevant and closely-related model of the disease as cells are derived directly from a patient of interest. Potential treatments can be screened against patients with specific mutations and genotypes, in a personalized medicine approach. The technique can also be used to vet small molecules and other agents as therapeutic approaches to diabetes.

Lead Inventor:
Rudy Leibel, M.D.

Applications:
- Method for generating beta cells for diagnostic and therapeutic applications.
- Efficient and reliable platform for studying cellular effects of diabetes mutations from the patient carrying the disease.
- In vitro testing platform for diabetes treatments.
- Protocols could be modified to derive other cell lines (i.e. hepatic, adipocyte, muscle, etc).

Advantages:
- Enables generation of therapeutic cells from directly from a patient.
• Provides a closely related model of the disease as the generated cells are derived directly from the patients themselves.
• Patients with rare disease mutations of diabetes may benefit from this technology because the efficacy of potential treatments may be tested first using this technology before being applied directly.

Patent Information:
Patent Pending

Licensing Status:
Available for licensing and sponsored research support
Tech Ventures Reference: IR CU12149

Related Publications:

Inventors

Rudolph L. Leibel MD