Monoclonal Antibody Enhancing T Cell Reactivity in AIDS Treatments

Technology #2842

“Lead Inventor: Nicole Suciu-Foca, PhD.

HIV/AIDS Treatment of Late-Diagnosed Patients are at Greater Risk for AIDS Defining Illness or Death AIDS is a significant cause of death and illness in children and adults worldwide. Although highly active antiretroviral therapy has improved HIV treatment in recent decades, treatment of late-diagnosed individuals can still be challenging. These patients may have either low T cell counts or impaired T cell reactivity with high HIV viral loads, and can be at greater risk for progression to an AIDS-defining illness or death. As a result, there is a need for a treatment that would enhance T cell reactivity to viral and bacterial antigens and help patients with AIDS. This technology describes an antibody that amplifies T cell reactivity and enhances the cellular immune response. This can improve the effectiveness of HIV/AIDS and other immunodeficiency therapies.

T Cell Reactivity Enhances Transformation of Small T Cells into Larger Cells for Improved Therapies This technology amplifies human T cell reactivity by enhancing the transformation of small lymphocytes (T cells) into larger cells capable of cell division in response to a monoclonal antibody that recognizes a glycoprotein situated on the surface of white blood cells and their bone marrow progenitor cells.

Applications: • Adjuvant uses. • Potential treatment for lymphomas, leukemia, or other diseases associated with immunodeficiency. • A molecular diagnostic that can differentiate between lymphomas and carcinomas. • Useful reagent resold for research purposes.

Advantages: • There are no specific monoclonal antibodies with similar enhancing effects. • Generation of T cell responses to various antigens. • Amplification of T cell responses to various antigens.

Patent Status: Copyright

Licensing Status: Available for Licensing and Sponsored Research Support”

Inventors

Nicole Suciu-Foca